Catch-Bond Mechanism of Force-Enhanced Adhesion: Counterintuitive, Elusive, but … Widespread?
نویسندگان
چکیده
منابع مشابه
Catch-bond mechanism of the bacterial adhesin FimH.
Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...
متن کاملCatch bond mechanism in Dynein motor driven collective transport
Recent experiments have demonstrated that dynein motor exhibits catch bonding behaviour, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we propose a model for catch bonding in dynein using a threshold force bond deformation (TFBD) model wherein catch bonding sets in beyond a critical applied load forc...
متن کاملCatch bonds in adhesion.
One of the most exciting discoveries in biological adhesion is the recent and counter-intuitive observation that the lifetimes of some biological adhesive bonds, called catch bonds, are enhanced by tensile mechanical force. At least two types of adhesive proteins have been shown to form catch bonds--blood proteins called selectins and a bacterial protein called FimH. Both mediate shear-enhanced...
متن کاملLeukocyte Adhesion: What's the Catch?
A recent study shows that the leukocyte adhesion molecules known as selectins form 'catch' bonds, the dissociation rate of which decreases with increasing applied force. The ability of selectins to switch between catch and slip bonds, where dissociation increases with force, can explain the shear threshold effect, in which leukocyte adhesion goes through a maximum with increasing shear rate.
متن کاملFor catch bonds, it all hinges on the interdomain region
Tensile mechanical force was long assumed to increase the detachment rates of biological adhesive bonds (Bell, 1978). However, in the last few years, several receptor-ligand pairs were shown to form "catch bonds," whose lifetimes are enhanced by moderate amounts of force. These include the bacterial adhesive protein FimH binding to its ligand mannose (Thomas et al., 2002; Thomas et al., 2006), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Host & Microbe
سال: 2008
ISSN: 1931-3128
DOI: 10.1016/j.chom.2008.09.005